Primal-Dual Lagrangian Transformation method for Convex Optimization

نویسنده

  • Roman A. Polyak
چکیده

Received: date / Revised version: date Abstract. A class Ψ of strongly concave and smooth functions ψ : R → R with specific properties is used to transform the terms of the classical Lagrangian associated with the constraints. The transformation is scaled by a positive vector of scaling parameters, one for each constraint. Each step of the Lagrangian Transformation (LT) method alternates unconstrained minimization of LT in primal space with both Lagrange multipliers and scaling parameters update. Our main focus is on the primal-dual LT method. We introduce the primal-dual LT method and show that under the standard second order optimality condition the method generates a primal-dual sequence that globally converges to the primal-dual solution with asymptotic quadratic rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primal-dual exterior point method for convex optimization

We introduce and study the primal-dual exterior point (PDEP) method for convex optimization problems. The PDEP is based on the Nonlinear Rescaling (NR) multipliers method with dynamic scaling parameters update. The NR method at each step alternates finding the unconstrained minimizer of the Lagrangian for the equivalent problem with both Lagrange multipliers and scaling parameters vectors updat...

متن کامل

A Primal-Dual Algorithmic Framework for Constrained Convex Minimization

We present a primal-dual algorithmic framework to obtain approximate solutions to a prototypical constrained convex optimization problem, and rigorously characterize how common structural assumptions affect the numerical efficiency. Our main analysis technique provides a fresh perspective on Nesterov’s excessive gap technique in a structured fashion and unifies it with smoothing and primal-dual...

متن کامل

Ergodic, primal convergence in dual subgradient schemes for convex programming, II: the case of inconsistent primal problems

Consider the utilization of a Lagrangian dual method which is convergent for consistent convex optimization problems. When it is used to solve an infeasible optimization problem, its inconsistency will then manifest itself through the divergence of the sequence of dual iterates. Will then the sequence of primal subproblem solutions still yield relevant information regarding the primal program? ...

متن کامل

Lagrangian Transformation and Interior Ellipsoid Methods in Convex Optimization

The rediscovery of the affine scaling method in the late 80s was one of the turning points which led to a new chapter in Modern Optimization the Interior Point Methods (IPMs). The purpose of this paper is to show the intrinsic connections between Interior and Exterior Point methods (EPMs), which have been developed during the last 30 years. A class Ψ of smooth and strictly concave functions ψ :...

متن کامل

Computational Complexity of Inexact Gradient Augmented Lagrangian Methods: Application to Constrained MPC

We study the computational complexity certification of inexact gradient augmented Lagrangian methods for solving convex optimization problems with complicated constraints. We solve the augmented Lagrangian dual problem that arises from the relaxation of complicating constraints with gradient and fast gradient methods based on inexact first order information. Moreover, since the exact solution o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005